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ABSTRACT

This paper addresses the issue of how to perform ar-
chitectural analysis on an existing product line archi-
tecture. The contribution of the paper is to identify
and demonstrate a repeatable process for the analysis
of an existing product line architecture. The approach
defines a “good” product line architecture in terms of
those quality attributes required by the particular prod-
uct linc under development. It then analyzes the archi-
tecture against these criteria by both mannal and tool-
supported methods. The phased approach described in
this paper provides a structured analysis of an existing
product line architecture using (1) formal specification
of the high-level architecture, (2) manual analysis of sec-
narios to exercise the architecture's support for required
variabilities, and (3) model checking of critical behav-
iors at the architectural level that are required for all
systems in the product line. Results of an application
to a software product line of spaceborne telescopes are
used to explain snd evaluate the approach.
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Product Lines, Interferometry Software

1 INTRODUCTION

A software product line is a collection of systems that
share a managed set of propertics that are derived from
a common get of software assets [4]. A product line
approach to software development. is attractive to most
organizations due to the focus on reuse of both intellec-
tual effort and existing tangible artifacts. The systems
in a software product line usually share a common ar-
chitecture. For a new product line, mnany alternative
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architectures are derived from requirements and one is
selected as the “baseline” or “core" for futurc systems.
For a product line that leverages existing systems, an ar-
chitecture may already be in place with organizstional
commitment to ita continued use.

This paper addresses the issue of how to perform archi-
tectural analysis on an existing product line architec-
ture. The contribution of the paper is to identify and
demonstrate a repeatable process for the analysis of an
existing product line architecture. Throughout the pa-
per, application to a software product line of spaceborne
telescopcs is used to explain and evaluate the approach.
The approach defines & “good” product line architec-
ture in terms of those quality attributes required by the
particular product line under development. It then an-
alyzes the architecture against these criteria by both
manual and tool-supported methods.

This paper demonstrates the analytical valve of speci-
fying an existing architecture with an Architectural De-
scription Language (ADL), both in terms of identifying
architectural mismatches with the product line and in
terms of providing a bascline for subsequent automated
analyses. Once an ADL model exists, the architecture
can be exercised manually by measuring the effect on
the architecture of each of a set of scenarios selected to
capture the required attributes (e.g., modifiability, fault
tolerance). We found that this technique was particu-
larly effective at verifying whether or not the architec-
ture supported planned variabilities within the product
line.

Further verification of the architecture involves auto-
mated tool support to analyze key, common behaviors,
We were particularly interested in the adequacy of the
fault-tolerant behavior of a critical data interface com-
mon to all systems. Model checking of the targeted
behaviors allows demonstration of the consequences of
some architectural decisions for the product line.

The phased approach described in this paper provides a
structured analysis of an exdsting product line architec-
ture using (1) architectural recovery and specification,
(2) manual analysiz of scenarios to exercise the architec-
ture's support for required variabilities, and (3) model
checking of critical behaviors at the architectural level
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that are required for all systems in the product line.

The rest of the paper is organized as follows. Section 2
provides background relating to software architecture,
product lines, and the interferometer application. Scc-
tion 3 describes the three-step approach outlined above
in greater detail. Section 4 presents and discusses the
results from the manual and tool-supported analyses.
Section 5 briefly describes related work. Section 6 of-
fers concluding remarks and indicates some dircctions
for future research.

2 BACKGROUND

This section describes background material in the areas
of software architectures, software product lines, and
interferometry.

2.1 Software Architectures

A software architecture describes the overall organiza-
tion of a software system in terms of its constitnent ele-
ments, including computational units and their intcrre-
lationships (15). In gencral, an architecture is specified
as a configuration of components and connectors. A
component is an encapsulation of a computational unit
that has an interface that specifies the capabilities that
the component can provide and the ways that a com-
ponent delivers its capabilities. The interface of a com-
ponent is specified by the the type of the component,
by one or more ports supported by the component, and
by the construints imposed on the ports of the com-
ponent, where component types are intended to cap-
ture architectural properties. Ports are the interaction
points through which a component exchanges resources
with ita environment. Port specifications specify the sig-
natures, and optionally, the behaviors of the resource.
Logic-based formal specifications may be attached to a
port to precisely capture behavioral properties. Formal
specifications of this sort enable a semantic-based ap-
proach to analyzing architectural behavior.

Connectors encapsulate the ways that components in-
teract. A connector is specified by the type of the con-
nector, the roles defined by the connector type, and the
constraints imposed on the roles of the connector. A
connector defines a set of roles for the participants of
the interaction specified by the connector. Connector
types are intended to capturc recurring component in-
teraction styles.

Components are connected by configuring their ports
to the roles of connectors. Each role has a domain that
defines 2 set of port types and only the ports whose
types are in the domain can be configured to the role.

Another important concept in the area of software ar-
chitectures ia the concept of an architectural style. An
architectural style defines patterns and semantic con-
straints on a configuralion of components and connee-
tors. As such, a style can define a set or family of sys-
tems that share common architectural semantics [13].
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For instance, a pipe and filter style refers to a pipelined
set of components whereas a layered style refers to a
set of components that communicate via bierarchies of
interfaces. The distinction between architectursal atyle
and architecture is an important concept throughout
the work described here. As one would expect, all the
systems in our example product line share a base ar-
chitectural style and a set of shared software compo-
nents that are organized and communicate in certain
prescribed manners. However, there are architectural
variations among the systems regarding the number of
components and connectors, with some systems repli-
cating portions of the baseline reference architecture in
their individual architectures.

2.2 Product Lines

Bass, Clements, and Kazman define a softwere product
line as “a collection of systems sharing a managed set of
features constructed from a common set of core software
assets” [4). These assets typically include a base archi-
tecture and a set of shared software components. The
software architecture for the product line displays the
commonality that the systems share and provides the
mechanisms for variability among the products. The
systetns in the product line are referred to as members
or derivatives of the baseline architecture or architec-
tural style.

2.3 Interferometers

The product line of interest in this work is a set of in-
terferometer projects under development by NASA’s Jet
Propulsion Laboratory. An interferometer, in this con-
text, is a collection of telescopes that act together as a
single, very powerful instrument. Interferometers will
be used to explore the origins of stars and galaxies and
to zearch for Earth-like planets around distant stars.
An interferometer combines the starlight it collects from
telescopes in such a way that the light “interferes” or in-
teracts to incrcasc the intensity of the observation. This
allows precise measurements to be made.

Among the NASA interferometers either proposed or
under development for launch in the next twenty years
are the Space Interferometry Mission (SIM), the New
Millenium Program’s Space Technology-3 (ST-3), and
the Terrestrial Planet Finder (TPF), as well as the
ground-based Keck Interferometry Project and the
Mount Palomar Interferometer [8, 14]. ST-3 and TPF
use telescopes that fly in formation on scparated space-
craft but work together as a single instrument, while
the other projects involve multiple telescopes working
together on one or more fixed axes.

Among the components shared by the interferometer
systems and discussed in this paper are the Delay Line,
the Fringe Tracker, and the Internal Metrology. The
Delay Line software compensates for the differcnce in
time between when starlight arrives at the separate mir-
rors. The Fringe Tracker software provides constant
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feedback to the Delay Line regarding needed adjust-
ments to maintain peak intensity of the fringe (patterns
of light and dark bands produced by interference of the
light). The Internal Metrology software provides input
to the Delay Line regarding small changes in distances
among parts of the intcrferometer that must be included
in its calculations.

In previous work, we analyzed commonalities and vari-
abilities of the JPL interferometry software project [12].
The software in these interferometers has a high degree
of commonality with a managed set of sharced features
built from core software components [{3]. A group of
developers with a strong background in interferometer
software is in place at JPL to develop and provide to the
interferometer projects a set of reusable, generic soft-
ware components.

3 APPROACH

In this section we describe the approach that was used
to analyze an interferometer software product line. Sec-
tion 3.1 summarizes the overall process used during the
project and introduces the architectural recovery, dis-
covery, and specification of the existing product line;
Section 3.2 describes the manual analysis process used
to measure quality attributes related to product lines;
and Section 3.3 describes the behavioral analysis per-
formed using automated tool support,

3.1 Process

A software architecture is one key required element that
should be preseut in order to analyze software for prod-
uct line “fAtness” since it is the architecture, above any
other artifact, that is being reused. One of the prop-
erties of this particular product line is that although
an architecturally-based product line approach was not
used in the construction of the software, the artifacts
(both conceptual and physical) were being used in a
manner indicative of a product line approach. Ags such,
several software products had been developed or were
in the process of being developed based on the corc ar-
chitecture.

For the interferometer software, we performed the fol-
lowing architecture-centered steps:

1. Architecture recovery, discovery, and specification
2. Manual architectural analysis

3. Tool assisted architectural analysis

The first step, architecture recovery, discovery, and
specification, was used in order to facilitate two goals:
1) to familiarize the analysts with the problem domain
and implemented solution, and 2) to support construc-
tion of a software architectural representation that was
consistent with current standards and vocabulary. For
this step, documentation, source code, and developer
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communication was used to assist in the construction of
a reasonable specification of the software architecture.
The resultiug specifications formed the basis for all sub-
sequent analyses, manual and automated.

The software architecture recovered in the first step
formed the baseline or core architecture for the inter-
ferometer product line. The assumption in this step
(later confirmed by the analysis described below) was
that, although changes in software code are frequent,
significant modifications to the software architecture are
infrequent. As such, a reasonable, initial view of the
software architecture can be derived from existing de-
sign documents and later modified as new information
is recovered.

To aid in the validation of the models constructed in the
first step, we consulted with the project engineers to de-
termine the accuracy of the architecture as documented
in comparison with how the project engineers viewed
the architecture. This information was instrumental in
constructing a more accurate view of the interferometer
architecture.

To further validate the accuracy of the core architecture
and its scalability to the existing and planned prod-
ucts in the product line, we then compared the core to
the individual product line derivatives. To facilitate the
comparison, we used Table 1 as a medium for commu-
nication with several developers. In the table, each row
rcpresents a different component that could be poten-
tially present in an interferometcr system. The columns
represent the different derivatives that are currently ei-
ther being developed or are planned for deployment. over
the next several years. This table served as a simple
way to represent features of the architecture that are
common in behavior to each potential derivative, but
can potentially very in multiplicity based on the num-
ber of potential starlight collectors or “arms”. For each
derivative, we consulted with developers to verify that
the number of components listed in the table was con-
sistent with individual mission plans.

rCOmponents Core | D1 | D2 [ D3 |
Baselines 1 1 3-4 1
Arms 2 2 6-8 2
Wide Angle Pointer 2 2 |68 2
Star Tracker 2 2 |68 2
Delay Line 2 2 | 68| 4
Fringe Tracker 2 1 341 2
Instrument CDS 1 1 1 1
User Interface 1 1 1 1

Table 1: Comparison Matrix

The next. phase of the approach was to perform a num-
ber of analyses in order to help determine whether the
architecture was amenable to a product line develop-
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Figure 1: Interferometer Software Architecture

ment approach. The primary goal was to determine
if certain, desirable quality attributes present in most
product line architectures were also present in the inter-
ferometer architecture. In addition, we were interested
in performing behavicral analysis in order to study how
behavioral interactions in the core architecture might
potentially impact derivatives.

The remainder of this section is divided into Manual
Architectural Analysis and Analysis Using Avtomated
Support Tools. One of the interesting aspects of this
bifurcation of the analysis along manual and automated
analysis lines is that the quality attributes that fall into
the class of warisbilitics seem to be supported only by
manual analysis techniques whereas the commonolities
seem to be supported in some manner by automated
tools. As the work described here is only a single point
of data, we do not attempt to explain the observation,
although we do find it interesting and recognize the need
for further investigation along these lines.

3.2 Manual Architectural Analysis

Bass, Clements, and Kazman divide quality attributes
into those that can be discerned by observing the system
at runtime and those that cannot [4]. Of the ones that
cannot be observed at runtime, modifiability is the key
property required by the interferometer product line.
Modifiability, according to Basa et al., “may be the qual-
ity attribute most closely aligned to the architecture of
a system,” and, as such, is a good way to evaluate the
architecture. Bass et al.; identify four categories of mod-
ihability: Extensibility or changing capabilities, Delet-
ing capabilities, Portability (adapting to new operating

environments), and Restructuring.

To evaluate the modifiability of the interferometry prod-
1uct line architecture, we found examples of each of the
four categories of modifiability in the requirements spec-
ification of a system currently being developed in the
product line . We then manually analyzed the effect of
each change on the specified architecture. This inter-
ferometer system was chosen because its requirements
were well documented and its requirements presented a
good challenge to the modifiability of the baseline ar-
chitecture.

The approach used is very similar to SAAM [9], a
scenario-based method for analyzing architectures. A
scenario is a description of an expected use of a spe-
cific product line. SAAM also tests modifiability, e.g.,
by proposing specific changes to be made to the sys-
tem. The advantage of the scenario-based approach is
that it moves the discussion from a rather amorphous,
high-level of generality (“modifiability”) to a concrete,
context-based level of detail particular to the product
linc (“adds pathlength feedforward capability").

The interferometer product line has significant require-
ments that fall under each of the four categories of mod-
ifiability.

e Potential extensibility variations include new al-
gorithms (e.g., a different fringe-search algorithm)
and added features (c.g., pathlength feedforward,
internal metrology).

¢ Dclctions involve changes required to support the
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Modifiability Seennrio Type Example Scenarin Effect on
Attribute Architecture J
Extensibility | Change algorithm Algorithin for fringe search No change required
changed
Extensibility | Add feature Pathlength feedforward No style change;
capability additional connectors
Extengibility | Add feature Internal metrology added No style change;
additional components
and connectors
Deletion Delete input Use pseudogtar rather No change required

than actual

Portability Charge HCI device

Shift handheld paddle
to ramote device

Connector uachanged

Portability Change sensor Starlight detector Interface intact; component
hardware chunged implementation changes
Portability Add input units More starlight collectors No style change;
“duplicate” existing pieces;
see discussion
Portability Add processors Distribute targeting No style change;
computation change within ¢omponents
Restructuring | Optimize for reuse | Proposed switch to CORBA | Might change style and

connectors

Table 2: Analyzing the Architecture’'s Modifiability via Scenarios

incremental capabilities of the various testbeds
and prototypes. For example, one testbed uses
pseudostar (simulated) input rather than actual
starlight, whereas the science interferometers will
use direct starlight as input.

s Portability changes are widespread, since differ-
ent interferometers in the product line will have
different numbers of starlight collectors, mirrors,
telescopes, etc. In addition, different systems will
use different starlight detector hardware and dif-
ferent operator interfaces (e.g., & handheld paddle
for the testbeds, remote commandability for the
fiight units). The interferometer software will run
on multiple processors, with the number of proces-
sors a variability among the systems.

» Restructuring changes that are not included in the
other categories are limited. A proposed change to
optimize for reuse is the only scenario used in the
architectural evaluation.

As shown in Table 2, nine representative changes were
selected to evaluate the modifiability of the architecture:
three extensibility changes, one deletion, four portabil-
ity changes, and one restructuring. All these changes
are variabilities in the product line specification, i.e.,
not common to all the interferometers. The approach
was to use these representative scenarios to exercise and
evaluate the baseline architecture. A discussion of the
results of the application to the baseline interferomcter

architecture and, more generally, of the advantages and
dizadvantages of this approach can be found in Section
4.

3.3 Analysis using Automated Support Tools
One of the goals of this project was to determine the
extent to which automated support tools eould be used
to aid in the analysis of a product-line software archi-
tecture. Specifically, it was our intent to identify tools
that could be adopted with little overhead, while still
gatisfying the objective of formally analyzing the archi-
tectural behavior. This meant that the selected tools
should have a reasonable level of support and documen-
tation.

Analyasis Steps

The following tasks were identified as the critical path
for achieving our automated analysis objectives: (1) Ar-
chitecture specification in an ADL, (2) Formal specifi-
cation of behavior, and (3) Analysis of behavior. The
approach used in the selection of notations and toois is
described here. The results of the tool-supported anal-
ysis are described and discussed in Section 4.

ACME [5] ADL and ACMEStudio {1] were chosen for
the specification of the architecture. ACME is an ar-
chitecture description language that has been used for
high-jevel architectural specifications [5]. ACME con-
tains constructs for embedding specifications written
in a wide variety of existiug ADLs, making it extensi-
ble to both existing and future specification languages.
ACME is supported by an architectural specification
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tool, ACMEStudio, that supports graphical construc-
tion and manipulation of software architcctures. Anal-
ysis of the design documents yielded the software archi-
tecture depicted in Figure 1.

In addition to recovering and specifying the high-level
view of the interferomcter architecture, behaviors of
component interactions were derived from existing de-
sign documentation. Specifically, we used information
found in design documents to help construct a formal
specification of component interactions in the interfer-
ometer software. The Wright ADL was used for the
formal specification of behavior. Wright [2] is an ADL
based on the CSP specification language [6]. The pri-
mary focus of the Wright ADL is to facilitate the speci-
fication of connector, role, and port semantics. In addi-
tion to being based on the well-established CSP seman-
tics, existing Wright tools support the ACME ADL, z0
provided a clean interface with the existing specifica-
tion.

The final step involved using the formal specifications
to analyze behavior of various aspects of certain inter-
actions between comnponents in the architecture. To in-
crease confidence in the validity of the formal analysis,
source code was informally reverse engineered to deter-
mine whether properties observed in the formal speci-
fication were present in the implementation. The Spin
Model Checker was used to further analyze behaviors
of intereat. Spin [7] is a2 symbolic model checker that
has been used for verifying the behavior of a wide va-
riety of hardware and software applications. Promela,
the input specification language for Spin, is based on
Dijkstra’s guarded command language as well as CSP.

The primary reason for choosing each of the notations
and tools listed sbove was a pragmatic one. The no-
tations are related either via direct teol interchange
support (as is the case between ACME and Wright) or
by some semantic foundation (e.g., CSP foundation lor
Wright and Promela). As such, the ACME framework
(including Wright specifications) could be used for spec-
ifying the interferometer architecture, and verification
using Spin could follow naturally with a small amount
of translation of the embedded Wright into Promela.

4 RESULTS

4.1 Architecture Specification

As shown in Figure 2, the original documentation for
the interferometry software depicts the architecture us-
ing a layered style. However, during the analysis and
subsequent aspecification of the architecture, it was dis-
covered that the architecture, as documented, exhibited
“layer bridging" properties whereby non-adjacent layers
in the architecture communicated, thus “bridging” or by
passing intermediate layers. In addition, sibling compo-
nents located in a layer were found to communicate,
contrary to the layered style. Consequently, the high-
level interferometer architecture was re-specified in a

ISU COMPUTER SCIENCE

style that was consistent with the services and behaviors
described in lower-level documentation. The resulting
architecture, shown inr Figurc 1, more accurately spec-
ified the architecture as a heterogeneous architecture
with a collection of communicating processes as well as
a constrained pipe and filter interaction between the
Tnstrument CDS and all of the other remaining compo-
nents.
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Figure 2: Original Core Architecture

4.2 Manual Analysis Results

The baseline architecture shows the commonality that
exists among the members of the product line. Each
member of the product line uses this architecture or an
adaptation of it. Thus, nothing in the architecture can
constrain the anticipated variabilities among the mem-
bers.

For the interferometer product line, a key aspect of the
“goodness” of the baseline architecture was how mod-
ifiable it was. It was with the goal of exercising the
product linc architecture that we considered the effect
on the architecture of each of nine representative mod-
ifiability scenarios, drawn from the documentation.

Effect on architecture of scenorios

Table 2 summarizes the results of our rnanual analy-
sis of the product line architecture [or modifiability via
the nine scenarios described in Section 3.2. Column 1
lists to which of the four categories of modifiability each
scenario belongs (Extensibility, Deletion, Portability, or
Restructuring). Column 2 is a high-level description of
the scenario (e.g., “Change algorithm”, “Add feature”,
“Change sensor”, etc.). Column 3 briefly describes the
particular scenario. Column 4 indicates the effect of
that modifiability scenario on the baseline architecture.

Of the nine scenarios, four involved no change to the
baseline architecture. These scenarios were: change of
algorithin, deletion of input, change of human-computer
interface device, and change of sensor device, Two
other scenarios, related to extensibility, require addi-
tional connectors and, in one case, an additional compo-
nent not in the original architecture. However, these ex-
tensions are relatively straipht-forward and their scope
is easy to anticipate.
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The other three scenarios require zignificant changes to
the product linc architecture, but the changes are not
visible at the level of the specified architecture. In one
case (add input units), implementation of the scenario
can involve adding “arms” (Le., additional axes) to the
interferometer. This has no effect on the more detailed
core architecture (which represents a single axis), but
requires duplication/replicalion of connectors and com-
ponents on the baseline architecture, a significant archi-
tectural conscquence. The scenario that distributes the
targeting computation over rnore processors can be ac-
cornodated without change to the baseline architecture.
At the level of the model, there was no commitment
to implementation details such as number of proces-
sors. The sole restructuring scenario, a possible switch
to CORBA, might change both the style and the imple-
mentation of the connectors, and would require further
investigation.

Discussion

Locality of change.  Most modifiability scenarios
demnonstrated good locality of change for the specified
architecture (i.e., involved changes that could be readily
scoped). The existence of an architectural specification
assisted in this effort. Most scenarios do not affect the
services required of other components.

Units of reuse. The units of reuse in the architecture
tended to be small. For example, a Delay Line is a
unjt, but a Delay Line-Fringe Tracker-Star Tracker is
not. All Delay Lines have a high degree of common-
ality, and the interfaces between a single Delay Line
and a single Fringe Tracker are similar for all mem-
bers (the “portability layer”), but the number of Delay
Linc-Fringe Tracker intetrfaces varies greatly among the
product line members. The architectural style was not
changed by the scenarios, but the number of connec-
tions and, to a lesser degree, components, was changed.
There are many different. cross-strappings possible and
a large amount of reconfiguration involved in meeting
the real-tirne constraints on the various miszions. Hav-
ing small units of reuse may complicate verification and
integration of individual members (e.g., with regard to
contention, race conditions, starvation, etc.).

Role of redundancy. Several of the scenarios involved
adding multiple, identical components or connectors.
However, these copies are not redundant, in the sense of
adding robustness, since they are all needed to achieve
the required performance. For example, if starlight
collectors are added, it is to increase the amount of
starlight that the interferometer can process in order
to meet requirements for detecting dim targets. Like-
wige, if processors are added, it is to meet requirements
for increasing the resolution capability of an interfer-
ometer. In this architecture, redundancy does not add
robustnesg for the most part; there are not spare units
or alternate data paths.
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Performance. One of the unusual aspects of this ap-
plication is that the range and scope of the variabilities
tend to be non-negotiable. This is due to the very tight
performance and accuracy requirements on the interfer-
ometry missions. For example, an upcoming interferom-
eter, the Space Interferometry Mission (SIM), requires
precision at the level of picometer metrology and mi-
croarcsecond astrometry. To achieve this level of preci-
sion, significant real-time constraints exist with limited
fexibility to ac¢omodate reuse concerns. Performance
requirements on each mission also drive the choice of
hardware, algorithins, and added capabilities. The con-
sequence for reuse is that in trade-offs of modifiability
vs. performance, performance wins,

Architectural style. Dcspite the range of variations
that affect the architecture (e.g., varying the number of
ports on a component, varying the number of instances
of a component), the intcrferometry project i8 commit-
ted to keeping the architectural style stable. Most im-
portantly, this demonstrates itself in their maintaining
the commmonality of the interfaces. The number of in-
terfaces is not constant among product line members,
but the interfaces themselves are relatively stable. Rec-
ognizing the long timeline over which the product line
will extend (proposed launches from 2003 to 2020) and
the primacy of performance (with ¢ontinuous improve-
ment of hardware and algorithms), the project has done
a good job of designing for evolvability.

Repeatable process. The manual analysis of the archi-
tecture is a repeatable process that can be applied to
product. lines. The process is as follows:

1. Identify anticipated changes from available docu-
mentation and project information. These antici-
pated changes form product line variabilities that
the baselinc architecture must accomodate.

2. Cateporize the anticipated changes into modifia-
bility categories (extensibility, deletion, portability,
restructuring).

3. Select and develop scenarios for each category. The
choice of scenarios is made to broadly challenge the
goodness of the architecture with regard to the four
modifiability categories.

4, Evaluate the effect of each modifiability scenario on
the baseline architecture. This gives a measure of
the goodness of the architecture with respect to the
anticipated variabilities for this product line.

4.3 Analysis Using Automated Support Tools

While the manual analysiz addressed issues related di-
rectly to the use of the interferomneter architecture as
a product line, the automated analysis was primarily
of use for analyzing behavior viewed as common across
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product line mernbers. As such, any behavioral proper-
ties (both positive and negative) discovered at the archi-
tectural level were likely to be common to all members
of the product line.

Spin Verification

A key element of the interferometer architecture waa
the use of the “Target Buffer” connector. This connec-
tor, both in the design and in the implementation, is a
non-locking buffer used to communicate star targets to
the Delay Line component by several other components.
The Target Buffer connector was viewed as a possible
concern, especially in light of the non-locking feature. It
was determined that behavior involving this connector
should be formally specified in order to study its impact
on the system.

There are several components that are either directly
or indirectly impacted by the non-locking nature of the
Target Buffer connector: Target Sources, a Command
Controller, and a Target Generator component. The
Target Generator uges the values written to the Target.
Buffer by various Target Sources to compute a target
position for the interferometer. The Command Con-
troller provides control for the computation by enabling
or disabling the Target Sources. Target Sources write a
timestamped value to the Target Buffer, with the times-
tamp determining a time that the target value becomes
valid.

The Target Generator uses the following four-step se-
quence for calculating the target position:

1. Promote waiting targets to active status if the cur-
rent time is greater than or equal to the timestamp

2. Read new targets from enabled target sources

3. Pend (assign to wail status or activate new targets
based on timestamps)

4. Compute the total target

The Wright specification of the interaction between the
Target Generator and the potential sources of data that
are written to the Target Buffer is shown in Figure 3.
The Source specification models the fact that a source
internally decides whether or not to write a new value to
the Target Buffer. Finally, the Target Generator speci-
fication models the target-position algorithm described
above.

From the Wright specification, we constructed the
Promela specification found in Figures 4 and 5 with the
intention of determining whether or not the following
situations could occur.
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Style TargetCoemputation
Connactor TargetBuffer
Role Writer = writetaxget!x -> Writer |"| Tick
Rola Reader = readtarget?x -> Reader |~| Tick
Glue = Writer,writetarget!x -> Glue []
Reader,recadtarget!x -> Glua [1 Tick
Component Source
Port CD9Command = enable -> CDSCommand |~f
disable -»> CDRCommand {1 Tick
Port DLTarget M write'x -» DLTazger |”| Tiex
Computation = (CDSCommand.enahle => Generate) ()
(CDSCommand .disable -> Computation) [} Tiek
wvherme {
Gencrate = DLTarget.write!y -> Generate []
Generate (] Tick

Y
Component TargetGeneratoer
Port Input = readtarget?x -> TargetBuffer |”| Tiek

Computation = (_prozmete ->
Input.read_taxget?z -2
_pend_or_activate -»

_compute ~> Computation [] Tick )
eud Stylae

Configuration TargetComputationlnstance
Inatances
tdl : TargetBuffer
8rcl : Source
dl : TargetGomerator
Attachmente
grcl.DLTarget as tbl.Writer
dl.Input as tbi.Reader
End Configuration

Figure 3: Subset of the Wright Specification

Data From Disabled Sourcea. s there a poten-
tial for calculating the target position by using
data from sources that are currently dizabled?
Best Data from Enabled Sources. [s there a
potential to calculate a target position by using
data that 1s less current than data currently in
the target buffer?

In the Arst case, we were intercsted in determining
whether or not it was possible to generate a target po-
sition by using data from inactive sources. In essence, a
target position input can be read by the Target Gener-
ator, pended due to the timestamp (e.g., the timestamp
indicates that the target value is not to be used until
some time in the future), and subsequently promoted
into use when the timestamp matches (or precedes) the
current time. The potential inconsistency occurs during
the time that the target is pended and is caused by the
fact that a source can be disabled during this waiting
period.

The second case involves the following situation. As be-
fore, a target from a source is read, potentially pended,
and eventually promoted. Because of the sequencing of
events, a new target value from the source can over-
write the recently promoted target, and based on the
timestamp be valid for immediate use.
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proctype source_1 (chan cds)
{
chan cmd;
chan ts = [1] of { int };
chan msg = [1] of { int };
int active_or_immctive;

cda?emd;

cmd7active_or_inactive;
do
:: (mags_generated < max_msgs) &&
(active_or_inactive = trus) ->
if
i1 run mescage(mag);
mag?o_tbl;
run timestamp{ta);
ta?al_ap;
mages_genorated = mags_generated + 1;
i+ akip;
£i;
t; (done != trum) -> cmd?active_or_inmctive;
tt (done == trye) -> break;
od

Figure 4: Promela Specification of Target Source

Using the Spin model checker, it was verified that
these situations do in fact exist. In order to determine
whether these cases were also present in the code, we
examined source files and were able to verify that the
situations, as documented and as specified with Wright,
did in fact exist in an early, pre-flight version of the
source code.

In each of these cases, the use of a non-locking buffer
coupled with the target-generator algorithm provided
the potential for intermittent values that are inconsis-
tent with the desired and current target. The interfer-
ometry project engineers confirmed that the Spin model
checker accurately modeled the software behavior in
both anomalous situations. In the first case, a target
from a currently disabled target source may still be ac-
tivated. In the second case, a newly received target with
a less-current timestamp can overwrite an active target.
However, in neither case is the software behavior con-
trary to intent, given the underlying assumptions about
the operational use of the software.

Discussion

The automated analysis of the interferometer architec-
ture using the Spin model checker was greatly facilitated
by the availability and use of the Wright and ACME
ADLs, In effect, by using this combination of tools, we
were able to use model checking in a manner that was di-
rected by the structure and behavior of a software archi-
tecture. That is, the software architecture specification
was used to direct the model checking activity by fa-
cilitating identification of potentially inleresting pointg
of interaction in the interferometer architecture. Given
the fact that any bchavior observed in the architecture is
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proctype dalay_line (chan valid)
i

int aum;
int v;
do
;1 (mBgs_genorated < may _mags) ->
/* "activation/promomion" of
pended sargeta achieved
by mairtaining previsus
value of =] or 32 =/
/% read nev targets from active target dourcesm =/

valid?v;
it t: (v == 0) => skip;
t: (v = 1) ->
al = o_tbi;
o_tbl = c¢lear:
:: (v == 2) =>
32 = o_th2;
e_th2 = cleay;
: (v == 3)
51 = o_thi;
82 = o_tb2;

o_tbl = clenr;
o_th2 = clear;
i;

/% check if pended or not ¢/
if (v > 0) -
if
+ ((si_ap <= now) &k (32_ap <= new)) ->
sum = gl + 82;
1 ((al_ap ¢= now) k2 (s2_ap > new)) =>
gum = gi.;
it ((8l_ep > now) && (a2_ap <= mow)) =>
gum W 42;
:: ((al_ap > now) Ek (a2_ap > now)) ->
skip:
71
11 (v =m 0) -> skip;
£i;

/% compute target %/
printf("v = %d, sum w ¥%d, s1 = %d,
52 = Yd\n",v, sum, si, 82);
/% reset sum »/
4l_pp ® nov;
32_ap ® how;
sum = 0:
i+ (mage_generated >= max_mags) -> break;
od;
done = 1;

Y

Figure 5: Promela Specification of Delay Line

potentially replicated among all product line members,
we found that the approach was a good complement to
the manual analysis activities.

5 RELATED WORK

As described in Section 3.2, the Software Architecture
Analysis Method (SAAM) is a scenario-based method
for architectural assessment. A related architectural
analysis method is the Architecture Tradeoff Analysis
Method (ATAM) [10]. This iterative method iz based
on identifying a set of quality attributes and associated
analysis techniques that measure an architecturc along
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the dimensions of the attributes. Sensitive points in
an architecture are determined by assessing the degree
to which an attribute analysis varies with variations in
the architecture. In our approach, we focus on qual-
ity attributes that are specific to product line architec-
tures. As such, the approach can be applied in either
the SAAM ¢r the ATAM context.

Rapide [11] iz a suite of techniques and tools that
support the use of erecutable grchitectural design lan-
guages (EADLs). The toolset supports analysis of time-
sensitive systems from the early construction phase
(e.g., architecture definition) to apalysis of correctness
and performance. In our work, the motivation for choos-
ing a particular technique was based on a desire to even-
tually transfer the technology to the project engineers.
In addition, we were interested in interoperability with
other tools. As such, we found that the Acme ADL and
associated AcmeStudio tool presented the least amount
of cducational overhead. Ac¢me also had the advantage
of being able to embed other ADLs in its specification.
However, we recognize that several alternatives such as
Rapide exist and are investigating the possibility of per-
forming similar analyses with those tools.

6 Conclusion

The work described here identifies and demonstrates a
process for analysis of an existing product-line archi-
tecture. The results of the architectural recovery and
discovery are captured in an ADL model to support
subsequent inquiries. The architecture is manually ana-
lyzed against a set of representative scenarios that cap-
ture the required quality attributes. Further analysis of
critical behaviors at the architectural level uses auto-
mated tools and model checking to evaluate the conse-
quences of architectural decisions for the product line.
The application of this combined approach to the inter-
ferometer's product line architecture resulted in some
meastrements of both the flexibility and limits of its
architectural style that could assist the project.

Further work is planned in several areas. In previous
work we have used formal techniques for reverse en-
gineering of code [?]. Wec plan to investigate how re-
verse engineering can also be used to assist in the re-
covery of product line assets. Thiz may involve consid-
eration of different analysis frameworks (e.g., Rapide)
that offer fully integrated environments and investiga-
tion of Wright/Spin translations. We also plan to pur-
sue the relationship between product-line commonali-
tiea/variabilities and analysis techniques. The observa-
tion here that quality attributes relating to variabili-
ties (e.g., modifiability) seem best supported by manual
analysis techniques whereas commonality attributes are
best analysed with automated tool support (e.g., modcl
checking) merite further study. Finally, we would like
to make more precise the role of architectural issues in
product line decision modela.
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